
風力式一

LIMIT LOAD CONDIDAL FAN

リミットロードファンの歴史は比較的新しく、従来のいわゆる多翼送風機(シロッコファン)に比較し性能、 構造とも著るしい改良が加えられ、最新型遠心送風機の一種として近時漸く認識されつつある機種であります。 リミットロードファンは、多翼送風機とほぼ型態は同様ですが、翼車の構造を異にし、静風圧を大きく必要と する時、又送風機内部をメッシュのあらい物体が通過する場合又塗装、排気等翼車にほこりの溜り易いときな どに便利に設計されております。

羽根車は主板および外板に鋲止めあるいは溶接された理論的なダブルカーブの鋼板製羽根を持ち,ケーミング 吸込口にはガイドベーンを備えて風量,風圧がいかに変化しても軸動力は一定の値を絶対に超過しない。いわ ゆるその名称の如く一定のロード(Load)に達すると増減しない特殊な性能曲線を示めします。

特性上風圧の増減に対して風量の変化が少いため併列運転あるいは自動調節が容易であり、効率は多翼式送風 機に比較して著るしく高く,外形はターボファンに較べて小型軽量であるなど数多くのすぐれた特長を有して おりますが,一方羽根が強大な構造であるため,羽根の腐食摩耗が大きい用途,あるいは塵埃その他の付着し やすい物質が含まれる用途にも適し、紡績工場,電報・電話局,病院その他一般建造物、冷暖房温湿度調節, 墜道の排煙換気,その他一般用・工業用の排風機としておすすめできる送風機であります。 弊社は材料の選定,仕入の入念を社則として居りまして、特にバランスには静的試験を施行するので好評を得 て居ります。

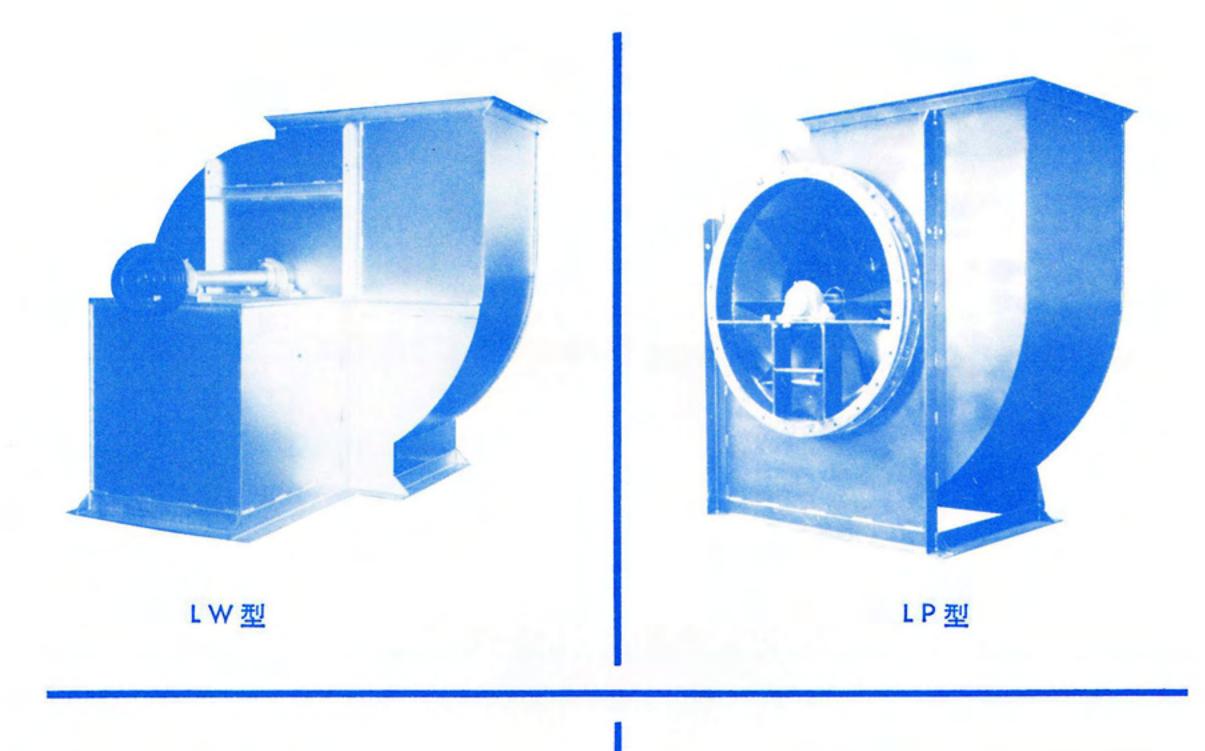
構 造

型

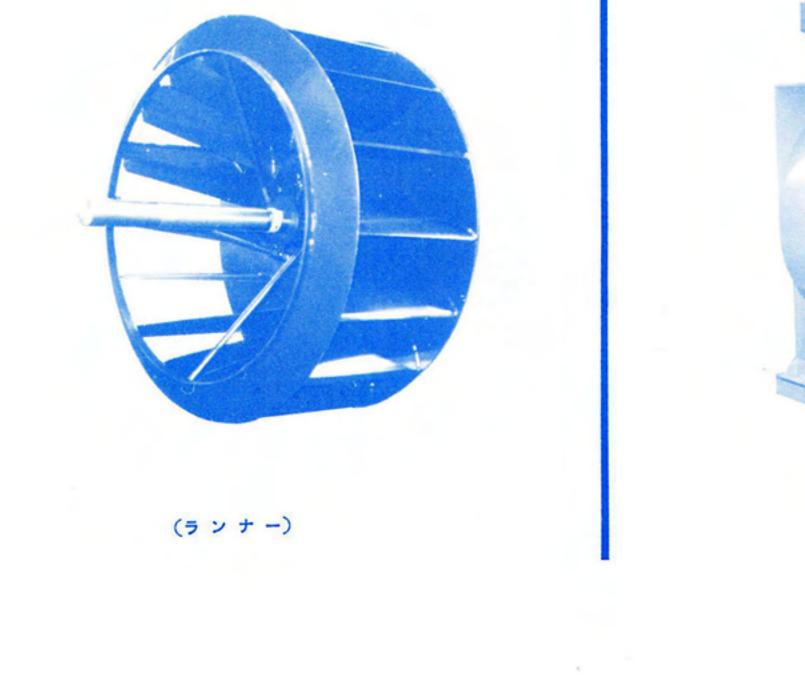
Ĵ

ケーシングは、鋼板製とし、平鋼、山型鋼、溝形鋼を用いて、 強固に補強されております。又、御客様の御意こうにより、上 下二ッ割あるいは数個に分割できる構造にも致しております。

L P	片吸込,両側軸受,片持ブーリー ベルト掛
L D	両吸込,両側軸受,片持ブーリー ベルト掛
L D	片吸込, 片側軸受, 両持ブーリー ベルト掛
L W	片吸込, 片側軸受, 片持ブーリー ベルト掛
L E	片吸込 モーター直結
LMC	片吸込, 片側軸受, カップリング モーター
LMP	片吸込, 片側軸受, カップリング モーター
LMO	片吸込, 片側軸受, カップリング モーター

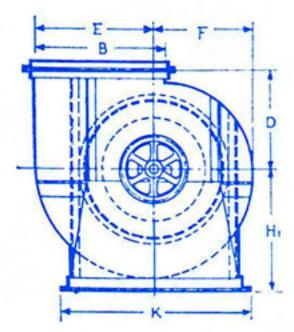

羽根車(ランナー)

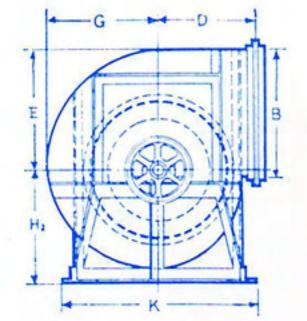
前向きの小羽根を16枚, 主板と外板に鋲止めあるいは溶接し流 体力学的に無理なく設計され、ボスから外板にステイボルトに よって補強するなど剛性を持たせ、完全なるバランスをとって ありますから運転に際し少しの震動もありません。従って高速 回転にも十分な安全性が保証されます。

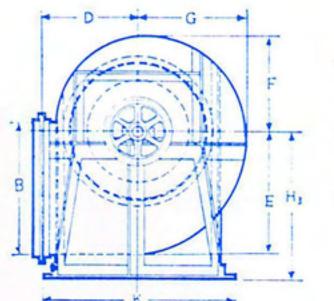

軸 受

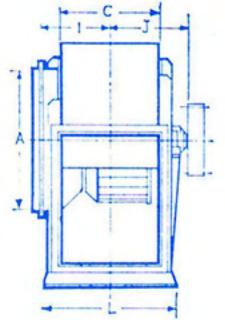
軸受は最高級ボールベアリングを使用し耐熱耐油性の合成ゴム シールがベアリング外輪にハメ込まれていて軸が自動調心した 場合外輪もそれに伴って自動調心する為、優れた防塵防湿の効 果を持っています。従って極めて悪条件の中でも安心して使用 する事が出来ます。普通の使用条件では大体一ケ年毎にグリー スを補給して頂けば充分であります。

LIMIT LOAD FAN

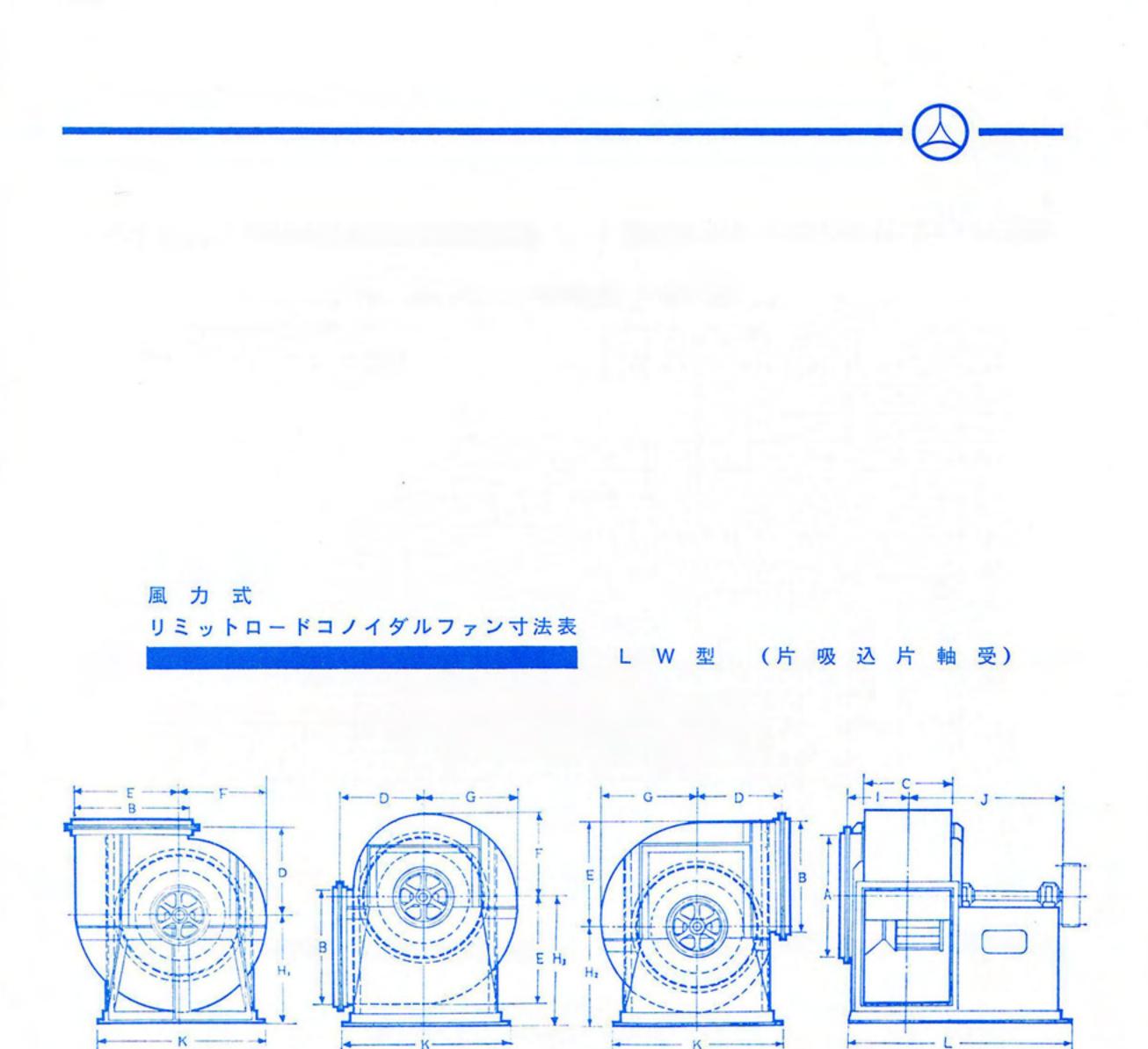



0


風 力 式 リミットロードコノイダルファン寸法表


L P 型 (片吸込両軸受)

.



123		в	C	D	E	F	C		Н				V	
*		Б	C		1.		G	H	H_2	H ₃	1		к	L
.ta 2 21/ 31/ 4	480	326 406 488 570 651	238 296 356 415 474	243 304 364 425 486	323 403 484 565 646	243 303 364 425 486	283 353 424 495 566	313 393 364 545 616	273 343 404 475 536	353 443 554 655 736	169 198 238 283 312	220 250 290 325 360	480 580 680 820 900	298 376 436 515 574
41) 51) 6 7	800	733 814 896 977 1140	534 593 652 712 830	542 597 658 719 830	727 807 888 969 1130	547 607 668 729 850	637 707 778 849 990	702 772 843 924 1065	612 672 733 804 925	832 912 993 1094 1255	342 372 401 456 515	400 430 470 505 580	1030 1110 1190 1340 1500	664 723 782 862 980
8 9 10	1280 1440 1600	1300 1460 1630	950 1070 1180	950 1060 1160	1290 1450 1610	970 1090 1210	1130 1270 1410	1205 1345 1485	1045 1165 1285	1415 1575 1785	575 635 690	665 740 810	1660 1820 1980	1100 1220 1330

.

記号	Δ	в	C	D	Е	F	G		Н			T	K	T
=	~		C				U I	H ₁	H ₂	H ₃			*	1
2	320 Ø	326	238	243	323	243	283	313	273	353	169	440	480	600
2 ¹ / ₂	400	406	296	304	403	303	353	393	343	443	198	530	580	740
3	480	488	356	364	484	364	424	364	404	554	238	630	680	865
3 ¹ / ₂	560	570	415	425	565	425	495	545	475	655	283	715	820	1000
4	640	651	474	486	646	486	566	616	536	736	312	825	900	1130
4½	720	733	534	542	727	547	637	702	612	832	342	905	1030	1280
5	800	814	593	597	807	607	707	772	672	912	372	1005	1110	1400
5½	880	896	652	658	888	668	778	843	733	993	401	1080	1190	1520
6	960	977	712	719	969	729	849	924	804	1094	456	1100	1340	1660
7	1120	1140	830	830	1130	850	990	1065	925	1255	515	1390	1500	1900
8	1280	1300	950	950	1290	970	1130	1205	1045	1415	575	1705	1660	2300
9	1440	1460	1070	1060	1450	1090	1270	1345	1165	1575	635	1905	1820	2560
10	1600	1630	1180	1160	1610	1210	1410	1485	1285	1785	690	2100	1980	2810

風 力 式 リミットロードコノイダルファン性能表 No. 2

Singl inlet limit load fan No. 2型性能表 Vベルト駆動, 空気温度 t =20℃の場合

mmAq	2	0	3	0	4	0	5	0	7	5	10	00	12	25	15	50
m³/min	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N,r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW
17.4	1278	0. 08	1491	0. 123												
21.4	1354	0. 102	1570	0.149	1750	0. 200										
24.6	1421	0. 126	1619	0. 174	1807	0. 228	1958	0. 286								
27.5	1500	0. 150	1682	0. 202	1855	0. 257	2019	0. 318	2368	0. 485						
33.7	1666	0. 216	1837	0. 275	1990	0. 337	2132	0. 402	2476	0. 586	2727	0.800				
38.9	1818	0. 293	1970	0. 357	2120	0. 423	2248	0. 496	2560	0. 686	2860	0. 900	3100	1. 134		
43.5			2110	0. 442	2236	0. 516	2370	0. 592	2660	0. 795	2932	1.019	3195	1. 261	3405	1. 518
47.7			2230	0. 539	2360	0. 610	2471	0. 703	2755	0.918	3020	1.138	3271	1. 388	3508	1.664
55.0					2570	0.835	2684	0. 917	2942	1. 154	3180	1. 403	3410	1.634	3620	1.940
61.6							2880	1. 164	3120	1.414	3380	1.679	3561	1.970	3745	2. 252
67.4									3288	1.675	3495	1.991	3695	2. 238	3891	2. 581
72.8									3430	1.948	3640	2. 278	3840	2. 585	4000	2.943
77.9											3800	2. 585	3988	2.970	4170	3. 268
82.5											3930	2.917	4115	3. 089	4275	3. 462
87.0											4070	3. 275	4255	3. 633	4410	3. 984
95.4													4470	4.349	4660	4. 745

「註」 — は最高効率附近なることを示す。従って送風機はこの附近に選定することによって、経常費(動力費)が最低となる。騒音も又最も少い附近である。

風力式

リミットロードコノイダルファン性能表 No. 2½

Singl inlet limit load fan No. 2½型性能表 Vベルト駆動, 空気温度 t =20℃の場合

-								
	00	00	10	50	75	100	105	150
mmAq	20	30	40	00	/3	100	120	100 1

				~			-	-		-						
m³/min	N.r.p.m	B.KW														
27.3	1027	0. 127	1198	0. 193												
33.5	1086	0. 160	1260	0. 234	1405	0. 313										
38.6	1143	0. 184	1300	0. 272	1455	0.358	1570	0.450								
43.2	1210	0. 235	1355	0.316	1495	0.404	1625	0. 501	1910	0. 761						
52.9	1340	0. 337	1480	0. 431	1600	0. 530	1715	0. 630	1990	0. 920	2200	1.238				
61.2	1465	0.462	1590	0. 562	1710	0. 666	1815	0. 780	2060	1.082	2300	1. 421	2500	1. 783		
68.4			1700	0.694	1800	0.812	1915	0. 929	2150	1. 253	2365	1. 597	2575	1.984	2750	2. 387
74.8			1790	0.845	1895	0.957	1990	1.104	2220	1. 434	2430	2. 201	2630	2. 178	2820	2. 574
86.3					2070	1. 302	2160	1. 432	2370	1.813	2560	2. 201	2740	2.563	2910	3.044
96.7							2320	1.823	2520	2.216	2720	2.630	2870	3. 081	3020	3. 536
106									2650	2.633	2820	3. 126	2980	3. 588	3140	4. 058
114.4									2760	3. 089	2930	3. 573	3090	4. 088	3220	4. 625
122											3050	4.043	3200	4. 599	3350	5. 110
129.6											3165	4. 573	3310	5. 133	3450	5. 707
136.6											3270	5. 133	3430	5. 670	3550	6. 267
150													3600	6. 901	3750	7.460

「註」 ― は最高効率附近なることを示す。従って送風機はこの附近に選定するこ

とによって、経常費(動力費)が最低となる。騒音も又最も少い附近である。

風 力 式

リミットロードコノイダルファン性能表 No. 3

Singl inlet limit load fan No. 3型性能表 Vベルト駆動, 空気温度 t =20℃の場合

mmAq	2	0	3	0	4	0	5	0	7	5	10	00	1	25	1	50
m'/min	N.r.p.m	B.KW	N.r.p.m	B.KW	N,r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N,r.p.m	B.KW	H.r.p.m	B.KW	N.r.p.m	B.KW
39.4	857	0. 183	1000	0. 278												
48.3	907	0. 238	1050	0. 337	1170	0. 451										
55.8	956	0. 285	1088	0.394	1214	0. 518	1317	0.648								
62.4	1010	0. 340	1132	0. 456	1248	0. 583	1357	0. 724	1593	1.101						
76.4	1120	0. 487	1234	0. 623	1336	0.765	1434	0.910	1663	1.326	1838	1.788				
88.2	1222	0.664	1325	0.810	1425	0.900	1510	1. 125	1720	1.556	1918	2.046	2087	2.566		
98.6			1418	1.001	1505	1.172	1594	1. 328	1790	1.805	1974	2.305	2146	2.857	2290	3. 439
108			1496	1. 222	1583	1. 382	1660	1.594	1850	2.067	2028	2.574	2196	3. 096	2350	3. 752
124.6					1725	1.880	1803	2.067	1975	2.611	2133	3. 178	2290	3. 409	2430	4. 394
139.5							1932	2.626	2094	2.842	2264	3.800	2391	4. 446	2512	5. 103
153									2212	3.805	2350	4.513	2485	5. 177	2620	5.856
165									2305	4. 454	2445	5. 162	2581	5.894	2689	6. 677
176.5											2552	5.856	2674	6. 647	2798	7. 393
187											2640	6. 595	2761	7.326	2875	7.550
197											2730	7. 423	2820	8. 161	2960	9. 027
216													3000	9.937	3125	10.73

「註」 — は最高効率附近なることを示す。従って送風機はこの附近に選定することによって、経常費(動力費)が最低となる。騒音も又最も少い附近である。

風力式

リミットロードコノイダルファン性能表 No. 31/2

Singl inlet limit load fan No. 3½型性能表 Vベルト駆動, 空気温度 t=20℃の場合

mmAq	20	30	40	50	75	100	125	150	
------	----	----	----	----	----	-----	-----	-----	--

m ³ /min	N.r.p.m	B.KW	N,r.p.m	B.KW	N.r.p.m	B.KW	N,r.p.m	B.KW	N,r.p.m	B.KW	N.r.P.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW
53.6	735	0. 249	858	0. 378												
65.6	776	0. 313	869	0. 457	968	0.613										
75.7	817	0. 386	930	0. 534	1038	0.942	1126	0.882								
84.7	863	0. 460	968	0. 619	1067	0. 703	1161	0. 983	1363	1. 496						
103.7	959	0. 661	1057	0.845	1145	1.039	1227	1.237	1424	1.802	1585	2. 425				
119.8	1045	0. 904	1134	1.100	1219	1. 299	1293	1. 529	1472	2.115	1643	2. 783	1785	3. 488		
134			1213	1.362	1286	1. 591	1364	1.820	1532	2.448	1688	3. 118	1835	3.883	1960	4.67
146.6			1280	1.656	1355	1.873	1420	2.164	1584	2.805	1734	3. 424	1882	4. 267	2001	5. 10
169.4					1480	2. 477	1545	2.802	1694	3. 551	1828	4.319	1951	5. 028	2080	5.97
189.5							1655	3. 573	1794	4.349	1940	5. 155	2048	6. 110	2153	6. 93
207.5									1892	4.857	2001	6. 125	2124	7.027	2241	7.93
224									1972	5.990	2009	7.013	2207	7.997	2300	9.06
239.5											2184	7.938	2290	9.012	2395	10.05
254											2260	8.974	2366	10.06	2462	11. 19
267.5											2340	10.09	2442	11.07	2530	12.28
293.5													2575	13.53	2677	14. 59

風 Л エ リミットロードコノイダルファン性能表 No. 4

Singl inlet limit load fan No. 4型性能表 Vベルト駆動, 空気温度 t=20℃の場合

mmAq	2	0	3	0	4	0	5	0	7	5	1	00	1	25	13	50
m³/min	N.r.p.m	B.KW	H.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW								
70.2	644	0. 326	714	0. 496												
86.0	680	0. 411	789	0. 599	878	0.804										
99.2	712	0. 505	815	0.700	910	0.919	985	1. 157								
111	757	0.605	850	0.812	936	1.036	1018	1. 287	1195	1.955						
136	849	0.867	926	1.108	1000	1.364	1075	1. 624	1248	2.365	1389	3. 178				
157	918	1. 185	992	1.442	1068	1.709	1126	2.003	1290	2.768	1440	3.641	1563	4. 573		
175.5			1062	1.781	1128	2.088	1195	2. 385	1342	3. 208	1480	4.096	1610	5. 088	1717	6. 118
192.2			1122	2.171	1188	2. 458	1245	2.835	1386	3. 171	1520	4. 588	1649	5. 595	1765	6. 685
222					1297	3.346	1355	3. 682	1484	4. 245	1600	5.670	1721	6. 588	1826	7.818
248							1450	4.678	1570	5. 125	1700	6.714	1793	7.893	1885	9.064
272									1659	6.744	1763	8.020	1850	9. 206	1960	10. 41
293.2									1728	7.923	1832	9.176	1935	10.49	2018	11.85
314							1				1916	10. 41	2001	11.84	2100	13. 17
332.5											1968	11.74	2070	13. 17	2155	14.64
351											2051	13. 24	2145	14. 55	2222	16. 12
385													2257	17.76	2349	19.10

「註」 — は最高効率附近なることを示す。従って送風機はこの附近に選定することによって、経常費(動力費)が最低となる。騒音も又最も少い附近である。

風力式

リミットロードコノイダルファン性能表 No. 4 1/2

Singl inlet limit load fan No. 4 ½型性能表 Vベルト駆動, 空気温度 t = 20℃の場合

		the second is the second s						
			1 diana					
	20	00	40	50	75	100	105	100
mmAGI	20	30	40	50	15	100	125	150

mmAy	4	0	0	U	4	U		U	1	5		00		20	1	00
m³/min	N.r.p.m	B.KW	N.r.p.m	B.KW	N,r.p.m	B.KW	N.r.p.m	В . К₩	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.P.m	B.KW
88.6	557	0. 411	668	0. 626												
108.6	605	0. 518	683	0.756	781	1.015										
125	635	0. 638	723	0.883	786	1.160	874	1. 455								
140	672	0. 762	753	1.024	832	1.310	880	1.623	1060	2.466						
171.5	746	1.096	822	1.399	890	1.720	955	2.044	1079	2.984	1233	4.006				
198	813	1. 492	882	1.817	948	2.153	1005	2. 526	1144	3. 492	1245	4. 588	1388	5. 760		
221.5			944	2.246	1000	2.634	1062	3.007	1192	4. 051	1318	5. 178	1394	6. 416	1525	7.722
243			998	2.751	1057	3. 111	1107	3. 589	1234	4.648	1354	5. 797	1467	7.065	1530	8. 453
280					1150	4. 223	1202	4. 641	1318	5.871	1423	7.147	1526	8. 311	1620	9.877
313							1286	5.879	1395	7. 184	1510	8.505	1592	9. 982	1674	11.46
343									1472	8. 535	1563	10. 13	1654	11.62	1743	13. 13
370									1588	9. 997	1626	11.60	1716	13. 24	1788	14.96
396											1700	13. 13	1782	14. 92	1863	16. 64
420											1758	14.83	1840	16. 64	1914	18. 50
443											1820	16. 71	1904	18. 38	1974	20. 41
486													2000	22.38	2088	24.17

風力式

リミットロードコノイダルファン性能表 No. 5

Singl inlet limit load fan No. 5型性能表 Vベルト駆動, 空気温度 t =20℃の場合

mmAq	2	0	30		40		5	0	7	5	10	00	125		150	
m³/min	N.r.p.m	B.KW	N,r p.m	B.KW	N.r.p.m	B.KW	N.r.p.'n	B.KW	N.r.P.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW
108.6	510	0.504	595	0.766												
133.2	534	0. 635	626	0.964	696	1.245										
153.6	567	0. 783	646	1.084	721	1. 426	781	1. 791								
171.8	593	0. 934	672	1. 257	741	1.604	807	1. 992	946	3.025						
210	663	1. 339	732	1.713	792	2.104	850	2.504	986	3.648	1098	4. 909				
243	726	1.832	787	2. 231	847	2.641	897	3.100	1022	4. 282	1142	5. 632	1238	7.072		
272			845	2.765	895	3. 230	948	3. 697	1064	4.976	1172	6. 335	1278	7.863	1363	9. 48
298			890	3. 023	941	3.816	987	4. 394	1100	5. 700	1208	7. 109	1308	8.676	1400	10. 37
344					1027	5. 185	1073	5.700	1176	7.214	1270	8. 773	1364	10. 21	1447	12.13
385							1149	7. 251	1246	8.833	1349	10. 47	1424	12. 28	1498	14. 07
421									1314	10. 48	1395	12. 41	1475	14. 25	1554	16. 12
455				-					1370	12.28	1453	14. 25	1535	16. 27	1600	18. 39
486	_										1515	16. 12	1589	18. 32	1662	20. 37
516											1571	18. 21	1644	20. 44	1709	22.72
544											1623	20. 52	1700	22. 53	1760	17.54
596													1785	27.46	1860	29.66

― は最高効率附近なることを示す。従って送風機はこの附近に選定するこ 「社」 とによって、経常費(動力費)が最低となる。騒音も又最も少い附近である。

風力式

リミットロードコノイダルファン性能表 No. 5½

Singl inlet limit load fan No. 5½型性能表 Vベルト駆動, 空気温度 t=20℃の場合

_	and the second se			and a second data with the sec		and the last wild be an other of the	the second se	the second se
	00	00	10	50		100	105	150
mmAq.	20	30	40	50	/5	100	125	150

mmod.	20		50		40		50		15		100		125		150	
m³/min	N.r.p.m	B.KW														
136.5	462	0. 633	540	0.964												
167.5	489	0.800	566	1. 165	630	1.566										
193	514	0. 985	585	1.362	652	1. 791	708	2.249								
216	543	1. 175	609	1.582	671	2.018	730	2.503	857	3.805						
264.5	603	1.686	664	2. 156	719	2.649	760	3. 156	894	4. 595	996	6. 177				
305.5	658	2.305	714	2.805	767	3. 320	813	3.894	926	5. 386	1032	7.080	1122	8. 899		
341.5			767	3. 469	810	4.058	857	4.640	963	6.244	1061	7.967	1154	9.906	1233	11.91
374			806	4. 222	852	4. 789	894	5. 521	995	7.147	1091	8.915	1182	11. 16	1264	13.04
431.5					930	6. 505	970	7. 161	1063	9.049	1148	11.03	1234	12.83	1308	15. 22
483							1040	9. 086	1128	11.08	1220	13. 13	1288	15. 41	1354	17.69
528.5									1188	13.15	1264	15.62	1336	17.91	1407	20. 22
571.0									1240	15. 28	1315	17.89	1390	20. 41	1448	23. 09
610											1371	20. 24	1438	23. 01	1503	25. 55
647											1420	22.83	1485	24. 88	1547	28. 50
680											1465	25.64	1532	28. 20	1588	31. 18
748													1615	34. 43	1682	37.22

風 力 式 リミットロードコノイダルファン性能表 No.6

Singl inlet limit load fan No. 6型性能表 Vベルト駆動, 空気温度 t =20℃の場合

mmAq	2	0	30		4	0	5	0	75		100		125		150	
m³/min	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B •K₩	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.K
157.5	428	0. 731	500	1.112												
194.1	455	0. 927	528	1.351	588	1.813										
222.8	477	1. 137	543	1. 572	606	2. 026	657	2. 574								
249	503	1.354	565	1.821	623	2. 328	677	2. 887	795	4. 387						
305.2	559	1.947	617	2. 492	668	3. 059	716	3. 633	830	5. 304	926	7.140				
352.5	610	2.634	662	3. 242	712	3. 835	754	4. 499	860	6. 222	959	8. 177	1042	10. 28		
394			709	3. 999	751	4. 678	796	5. 357	894	7. 207	986	9. 191	1072	11. 37	1142	13.74
431.5			747	4.879	791	5. 521	829	6. 364	923	8. 259	1012	10. 30	1097	12. 57	1173	15. 02
497					860	7. 490	899	8. 244	984	10. 42	1064	12.69	1142	14. 76	1212	17.51
557							965	10. 49	1045	12.80	1132	15. 16	1194	17.76	1255	20. 41
610									1103	15. 16	1172	18. 02	1238	20.67	1305	23. 35
659									1153	17.77	1221	20. 63	1289	23. 58	1344	26. 64
705											1275	23. 43	1336	26. 58	1397	29. 55
747											1318	26. 38	1379	29.62	1435	32.90
787											1363	29.66	1425	32.60	1477	36. 11
863													1498	39.77	1562	42.97

とによって、経常費(動力費)が最低となる。騒音も又最も少い附近である。

風力式

リミットロードコノイダルファン性能表 No.7

Singl inlet limit load fan No. 7型性能表 Vベルト駆動, 空気温度 t =20℃の場合

 00	00	50	E0.	76	100	105	150

mmAq	20		30		50		50		75		100		125		150	
n³/min	N.r.p.m	B.KW	N.r.p.m	B.KW												
214	368	0. 994	429	1.510												
263	388	1. 255	451	1.828	502	2. 455										
303	409	1.545	466	2. 141	521	2.809	564	3. 529								
338.5	432	1.843	485	2. 477	534	3. 156	582	3. 924	682	5.953						
415	480	2. 649	529	3. 387	573	4. 163	614	4.946	713	7.214	793	9.698				
479	524	3. 604	568	4. 402	610	5. 207	647	6. 110	737	8. 430	823	11. 12	894	13.95		
536			610	5. 446	645	6. 364	683	7. 281	767	9.810	846	12. 52	922	15.56	982	18. 73
587			642	6. 632	680	7.520	704	8.654	794	11. 23	869	14.01	943	17.09	1010	20. 44
677					740	10. 21	773	11.22	846	14. 20	915	17.31	982	20. 11.	1042	23. 88
758							829	14. 28	898	17. 39	972	20. 59	1024	24. 17	1080	27.76
830									948	20. 67	995	24. 50	1065	28.13	1123	31.71
896									988	24. 17	1047	28.05	1106	32.04	1155	36. 26
959											1095	31. 78	1147	36. 19	1202	40. 21
1016											1132	35. 89	1185	40. 29	1218	44. 69
1070											1170	40. 29	1224	44. 32	1268	49.17
1174													1285	54.01	1340	58. 42

風力式

リミットロードコノイダルファン性能表 No. 8

Singl inlet limit load fan No. 8型性能表 Vベルト駆動, 空気温度 t=20℃の場合

20 30 40 125 mmAq 50 75 100 150 m³/min N.r.p.m B .KW 375 1.977 321 1.298 280 393 2.384 339 1.637 437 3.204 343 407 2.790 453 3.663 491 4.602 395 357 2.018 4.133 423 3. 238 595 7.796 508 5. 133 442 378 2.402 466 462 4.073 622 9. 422 542 419 3.454 500 5. 430 536 6.460 691 12.66 496 5.744 565 7.982 644 11.04 718 14.51 779 18.22 626 457 4.715 534 6.804 855 24.40 8.318 670 12.79 700 532 7.102 562 596 9.512 737 16.34 803 20.29 9.832 18.28 881 26.71 781 22.31 768 561 8.690 594 622 11. 33 694 14.70 759 675 14.81 858 26. 19 911 30.96 885 646 13.28 740 18.50 22.38 799 940 31.93 990 723 18.21 894 31.11 784 22.00 848 26.48 978 40.81 1084 826 26.48 877 31.48 927 31.11 1170 964 41.18 1005 46.63 862 30.92 912 35.88 1252 1000 46.32 1045 51.62 954 40.66 1326 45.88 1032 51.55 1074 57.30 987 1068 56.85 1108 63.11 1400 1022 51.55 1534 1123 69.01 1169 74.6

「註」 — は最高効率附近なることを示す。従って送風機はこの附近に選定することによって、経常費(動力費)が最低となる。騒音も又最も少い附近である。

風力式

リミットロードコノイダルファン性能表 No. 9

Singl inlet limit load fan No. 9型性能表 Vベルト駆動, 空気温度 t =20℃の場合

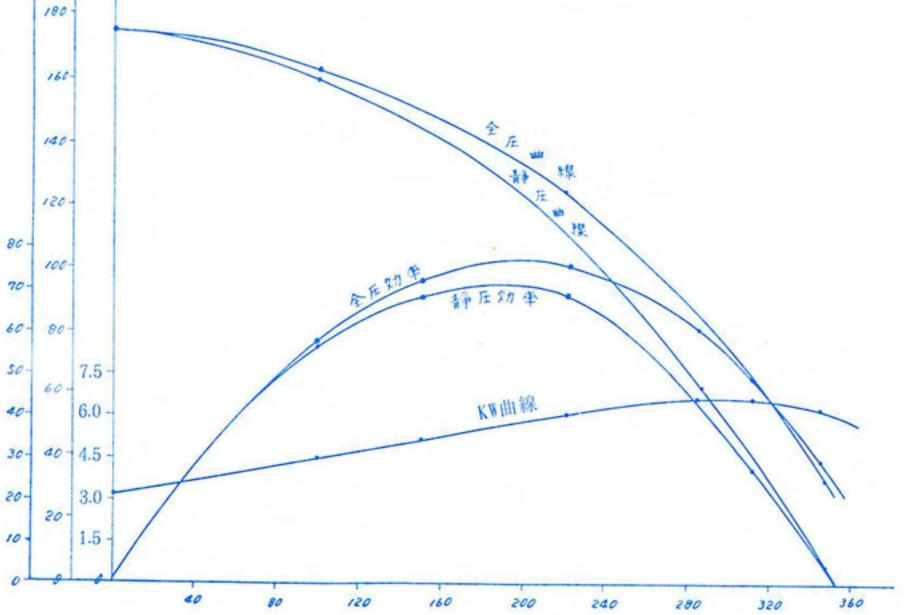
mmAg 20 30 40 50 75 100 125 150

married	20		00		40		00		10		100		120		100	
m³/min	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N,r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.KW	N.r.p.m	B.K
354	285	1.642	333	2.500												
434.5	302	2.074	350	3. 022	390	4.059										
501	318	2. 485	362	3. 439	404	4. 581	438	5. 752							-	
560	335	2.955	376	3. 932	414	5. 118	451	6.319	530	9. 587						
586	372	4. 215	410	5. 416	445	6.670	476	7.960	553	11.60	615	15.60				
793	407	5. 722	441	7.013	474	8.356	502	9.810	572	13. 62	639	17.91	694	22.46		
886			473	8.654	500	10. 19	530	11.68	594	15.74	655	20. 15	713	25.00	762	29.9
971			498	10. 52	526	11.98	553	13.81	615	18.06	674	22. 53	731	27.53	782	32. 9
1121					575	16. 19	600	17.91	658	22.76	711	27.76	763	32. 31	809	38. 50
1254							643	22.61	697	27.76	754	32.98	795	38.80	836	44. 54
1373									735	32.83	781	39. 17	826	45.06	870	51.03
1482									767	38. 35	812	44.69	858	51.93	894	58.04
1585											849	50. 58	890	57.60	930	64. 23
1680											878	56.77	918	64.09	956	71.40
1772		-									909	63.86	950	70. 58	986	78. 33
1942														85.64		92.88

風力式 リミットロードコノイダルファン性能表 No.10

Singl inlet limit load fan No. 10型性能表 Vベルト駆動, 空気温度 t =20℃の場合

mmAq	2	0	30		4	10	5	0	7	'5	10	00	125		150	
m³/min	N.r.p.m	B.KW														
438	258	1.977	301	3.007												
537	272	2. 492	316	3. 633	352	4.887										
620	287	3.074	327	4. 253	365	5. 595	395	7.028								
693	303	3.648	340	4.857	. 374	6. 297		7. 498		11.88						
848	336	5. 215	370	6. 699	399	8. 281	430	9.848	1	14.36		19.29				
981	368	7.065	398	8. 691	429	10.34	454	12. 16	517	16.86	_	22.16		27.76		
1096			426	10.71	451	12.61	479	14.44	528	19.47	592	24. 92	645	30.96	687	37.15
1200			450	13.00	476	14.81	498	17.09	556	22. 31	608	27.83	660	33.95	706	40. 59
1386					520	20.00	542	22. 16	594	25.74	642	34. 32	688	40.06	731	47.60
1550							581	27.98	629	34. 32	680	40.81	718	48.05	755	55.06
1698									664	40. 59	705	48.34	745	55.66	786	63. 04
1834									692	47.45	734	55. 28	775	63. 34	807	71.77
1960											767	62.59	804	71.32	840	79.53
2080		_									794	70. 43	830	79.45	863	88. 41
2190											819	79.08	857	87.29	888	96. 99
2400													894	106. 0	939	114.9


「註」 ― は最高効率附近なることを示す。従って送風機はこの附近に選定するこ とによって、経常費(動力費)が最低となる。騒音も又最も少い附近である。

風力式

リミットロードコノイダルファン性能表

効率 風圧 動力 % MARg KW

標準 NO.A limit load fan on N生能

